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Abstract

The asymptotic distribution of an M-estimator is studied when the under-

lying distribution is discrete. Asymototic normality is shown to hold quite

generally within the assumed parametric family. When the specification of the

model is inexact, however, it is demonstrated that an M-estimator with a non-

smooth score function, e.g. a Huber estimator, has a non-normal limiting dis-

tribution at certain distributions, resulting in unstable inference in the

neighborhood of such distributions. Consequently, smooth score functions are

proposed for discrete data.
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Keywords and Phrases: Robust estimation, M-estimator, discrete parametric
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1. Introduction

M-estimation, originally proposed by Huber (1964) to estimate a location

parameter robustly, has since been applied successfully to a variety of esti-

mation problems where stability of the estimates is a concern. There is, for

instance, a substantial body of literature on M-estimation for regression

models; see Krasker and Welsch (1982) for a recent review. For further re-

ferences on M-estimation, see Huber (1981).

Much of the popularity of M-estimators can be attributed to their flexi-

bility. Desired properties of an M-estimator, such as relative insensitivity

to or rejection of extremely outlying data points, can be specified in a

direct way since the influence function of an M-estimator is proportional to

its score function; see Hampel (1974) or Huber (1981) for details.

Surprisingly, M-estimation for discrete data seems to have received little

attention. Discrete data are no less prone than continuous measurements to

outliers or partial deviations from an othenise reasonable model; see, for

instance, data from mutation research presented in Simpson (1985). This

paper investigates some aspects of M-estimation for discrete data.

A useful optimality theory has been developed by Hampel (1968, 1974) for

robust M-estimation of a univariate parameter. His general prescription fa-

cilitates the construction of robust M-estimators with nearly optimum effi-

ciency at a specified model. Proposals for robust estimation of the binomial

and Poisson parameters, for instance, can be found in Hampel (1968). Hampel's

univariate theory is briefly reviewed in Section 2. Extensions of this opti-

mality theory to certain multivariate models are discussed in Krasker (1980),

Krasker and Welsch (1982), Ruppert (1985), and Stefanski, Carroll, and Ruppert

(1985).

5'
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The score function for Hampel's optimal M-estimator is not smooth, that

is, it is not everywhere differentiable. This can lead to complications in

the asymptotic theory when the data are discrete. For instance, Huber (1981,

n. 51) considers the case where the underlying distribution is a mixture of

a smooth distribution and a point mass. He observes that if the point mass

is at a discontinuity of the derivative of the score function. then an M-

estimate for location has a non-normal limiting distribution. Along the same

lines, Hampel (1968, p. 97) notes that the optimal M-estimate for the Poisson

parameter is asymptotically normal at the Poisson distribution, provided the

truncation points of the score function are not integers. He conjectures

that "under any Poisson distribution, it is asymptotically normal (with the

usual variance); however, this remains to be seen."

This paper provides extensions to the asymptotic distribution theory of

M-estimators especially relevant to discrete data, although Theorem 1 is

somewhat broader in scope'. The main results are given in Section 3. Among

the applications of the theory are a more complete account of the asymptotics

of the Huber M-estimate for location and a proof of Hampel's conjecture.

Aside from providing a more complete asymptotic theory for M-estimation, the

results have implications for choosing a score function when the data are dis-

crete. These are discussed in the final sections. In particular, smooth

score functions are proposed.

2. Parametric M-estimation: Definitions, optimality and examples

Suppose Xl,X 2,... are independent observations, each thought to have dis-

tribution function (d.f.) F , where 6 belongs to a parameter set 0; here 0 is

.1
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a subset of Rd, d>1. Define

(2.1) M(t;p,F) = fip(.,t)dF,

where F is a d.f. on R , p(.,.) is a measurable real-valued function on

R x0, and tE0. Then Tn is an M-estimator for e, based on a sample of size

n, if it solves an equation of the form

(2.2) M(Tn p,Fn) =0

where F is the empirical d.f.. The standard requirementn

(2.3) M(6;tp,F 0 ) = 0, Oe,

and additional regularity conditions ensure that Tn consistently estimates

0 when the model is correct.

Suppose now that OcR The influence function at F of an M-estimator

for e has the form

a(x,e) - (,
-ff{-p (-,e)}dFe

provided this exists. Assume Fe has a density fe with respect to a suitable

measure, and assume the parametrization is smooth. Letting E(x,o) =--logfW(x),

the optimal score according to Hampel's criterion has the form

(2.4) rc(e)(Z(xe) -o(e)),

where

u, Jul-< c
IPc(U) csign (u), Jul >c,

.4,
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and a is defined implicitly by (2.3). This estimator cannot be dominated

by any M-estimator simultaneously with respect to the asymptotic variance and

the bound on the influence function at F This is assuming, of course, that
the estimator is asymptotically normal at Fe. 6'

The truncation point c(e) determines the bounds on P(.,e) and hence the

robustness of the estimator to outlying data points. Observe that the maximum

likelihood estimator has the form (2.4) with c(e)E- and (e)=O. 

Two examples given in Hampel (1968) will be of special interest here.

Example 1. If F is the normal d.f. with mean 0 and unit variance thene

Z(x,e) = x -0. By symmetry a() -O, and constant variance suggests setting

c(e) Hc. The resulting estimator, with score pc(X-) is the Huber (1964)

M-estimator for location.

Example 2. If Fe is the Poisson d.f., with density f (x)=e-eX/x! on

x=0,l,2,..., then Z(x,e) =xe-l -1. Hampel (1968, p. 96) suggests taking

c(e)= co"e/2 on the grounds that Z(x,e) has standard deviation 0" /2. For

this choice (2.4) is equivalent to c(X - /2 - 0/2 - (e)). The version

(2.5) ,Pc (Xe- 2_- a(e)),

where 2(e) =/2+a(e) is defined by (2.3), is slightly more convenient.

3. Extended asymptotic distribution theory

Conditions for consistency of an M-estimator can be found in Huber (1964,

1967, 1981). Since the smoothness plays no role in the consistency proofs,

consistency will usually be assumed here.

Huber (1981, theorems 3.2.4 and 6.3.1) shows under quite general condi-

tions that if T n e =T(G) in probability as n- then

enW
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z n :

(3.1) -nMTn;,G) : n- /2 1(xi,e) + o (1),n i=l

where M is given by (2.1). In particular, ' need not be differentiable; mono-

tonicity or Lipschitz continuity conditions are sufficient. That Tn is asymo-

totically normal follows immediately from (3.1) provided M(t;p,G) has a non-

zero derivative at e and O<f2 (.,e)dG<-; see Corollary 6.3.2 of Huber (1981).

For stronger almost sure representations for T under stronger conditions, seen

Carroll (1978a, 1978b).

To avoid Lipschitz conditions for score functions like (2.5) that have im-

plicitly defined centering oarameters, the following lemma is useful. The

proof is contained in the proof of Theorem 2.2 of Boos and Serfling (1980).

Denote by jjv the total variation norm, given by

k
lihilv lim sup X lh(xi) - h(Xil)I'

i=l 1

where the supremum is over partitions a = x < x < ... < x b of [a,b], and the
0 1 <kbofab]anth

limit is as a --- , b-cx.

Lemma 1. Let X1 ,X2,... be independent, each with d.f. G, and let 8=T(G).

Suppose e(x,t) is continuous in x for tEecRd and

lim p(',t) - (',e)lv = 0.

If Tn -0e in probability as n-, then (3.1) holds.

Remark. The score functions of Examples I and 2 are continuous in total vari-

ation. For the former see Boos and Serfling (1980). For the latter, see

Simpson (1985).
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When the underlying distribution is discrete, the set of points where

fails to have a derivative has positive probability for certain parameter

values. In light of (3.1), it is natural to ask whether M can have a deri-

vative at such parameter values, i.e., whether Tn can be asymptotically nor-

mal.

The following theorem addresses this question. For 8EOcR
d , F is as-

sumed to have a density f, :f(-,O) with respect to a a-finite measure i, and

d= ,p(''e) is measurable for each e. Let 11'11 denote any norm on R equivalent

to the Euclidean norm. Some regularity conditions are needed:

(Al) There are measurable functions w= w(.,t) and gt= g(' t) for which

fwtftdi, flqhtlgtdp and fwtgtdli are finite and, for some 6>0,

(i) Ifs  ft  Ils-tIIg t , and

(ii) [Ip1 s W t

almost everywhere [p] (a.e.) when Ils-tI 6 ;

(A2) There is a measurable Rdvalued function ft = (,t) such that

If -ft (s-t)Tft I o(Is-tlt) a.e.;

(A3) qs , t  a.e. as s- t.

Theorem 1. If for each tE0 (Al)-(A3) hold and

(3.2) M(t;Ft) 0

r, then
".(3.3) D M (s; )ds t .

where Ds denotes vector differentiation, and where the dependence of M on

has been suppressed.

- . .. . . .. . . . - . - -.- . . . ... . ..
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ProoF For s,tE 0

0 = M(s;Ft) - M(t;Ft) + M(s;Fs) - M(s:Ft)

M(s;Ft) - M(t;Ft)

(3.4) + M(t;F s) - M(t;Ft) + Rt(s),

where Rt(s) f (4s-wt)(f -f )dpi

and (3.2) was used. The integrand of Rt(s) is dominated in absolute value

by 211s-t1wtgt on Ils-t1l !6 because of (Al). Hence, by (A3) and Dominated

Convergence,

(3.5) R t(s) : o(ils-til).

Similarly, (A2) and Dominated Convergence imply

jM(t:Fs) - M(t;Ft) - (s-t)Tfitjttdvi

" qfitj Ifs -ft -(s -t)Tft du

= 0( s -t I) as s -t,

since the integrand is dominated by 211s - til Iitjg t on Ils - tl 6. From

(3.4) to (3.6) conclude

I M(s;Ft) - M(t;Ft) + (s-t)T f1PttdjI = o(11s-t ).

Hence Ds M (s;Ft) exists at t and is given by (3.3).

Remarks. 1. Note that t need not be differentiable.

2. When t = t t t/ ft ' (3.3) generalizes the usual information identity.

S * . .. S



p3. Huber (1981, p. 51) observes a special case, namely (3.3) holds when

% is Lebesgue measure, ,(x,t)=: (x-t), where () is skew-symmetric about zero,

and f(x,t) = f(x- t), where f(.) is differentiable and symmetric about zero.

4. Equation (3.3), when it holds, also guarantees that the influence function
'

at the model, given by

{D M (s;Ft)It}lP(x,t)

is defined for each tE 0, provided that fPttdI, 0.

Example 2 (continued) SUDDOse f(x,t) e-ttX/x! on {0,l,2,...}, t>0. Recall

that the optimal M-estimator has the score (x,t) =c (xt2 - ). This esti-

mator is known to be asymptotically normal at the Poisson distribution when t

is in one of the open intervals where neither of the truncation points

t /2( +c) is an integer; see Hampel (1968, p. 97).

To show that it is asymptotically normal at every Poisson distribution,

as conjectured by Hampel, first use Theorem I with

g(x,t) = e2 6f(x-l,t+5) + -1 (e - -l)f(x,t), w(x,t) c and

f(x,t) = f(x- 1,t) - f(x,t). Note that c l is sufficient for $ to be con-

tinuous, and hence for (A3); see Simpson (1985).

Since Lemmna 1 applies and O <ftd c2 for c l, it follows that the

estimator is asymptotically normal at every Poisson distribution if it is

consistent. For consistency see Hampel (1968, p. 96) and Theorem 2 of Huber

*(1967).

In Theorem 1, (3.2) allows smoothness of the parametrization to be sub-

stituted for smoothness of , within the assumed parametric model, so that

the estimator is asymptotically normal under further conditions. If the

': " " 
' ' ''-. .''. .,'"

" "'"." -" " "-" " "" " " '" "'" "" " " "" " " • " " '" "" " " " . ' . " .
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specification of the model is inexact (as is often suspected), no result like

(3.3) is available. In certain cases, it is still possible to obtain the

limiting distribution of Tn from (3.1).

Assume for simplicity that e is an open subset of the real line. The

score functionsused for robust estimation are generally at least niece-wise

differentiable. The one-sided derivatives of M(t;G) will then exist, in

general, even when M fails to be differentiable. Write

m(t;G) M (t;G)
mtMttGG

when the derivative exists. By a well-known result from calculus, if

m(e-;G) and m(e+;G) exist, they are equal to the corresponding one-sided

derivatives of M(t;G) at 8; see, e.g., Franklin (1940, p. 118).

Theorem 2. Suppose for some a interior to e that M(e;G)= 0, and let Tn be a

zero of M(t;Fn), n=l,2,..., where Fn is the empirical d.f. Assume the fol-

lowing:

(Bl) M(9-;G) and m(O+;G) exist finitely and are non-zero and of

the same sign;
(B2) 0< a< -, where 2 = dG

(B3) Tn e in probability as n-, and (3.1) holds.

Then

'/2(3.7) lim sup Ipr{n (T -0).-5z} - H(z)l = 0,
n-K - <Z<0

wher H() = (Im(O+;G)jzla), zz 0
where H(z) = j(jm(e-;G)jz/a), z50,

and ¢ is the standard normal d.f.

• - - • - • . ° • - *.. . . .- . - * *°. o . o . * .- ° . .-w . .
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Remarks. 1. Huber (1964, D. 78) alludes to a similar result for a location

estimator.

2. The requirement that m(e+ ;G) have the same sign is actually implied by

the remaining conditions. If the one-sided derivatives were to have opposite

signs, M(t;G) would not change signs in a neighborhood of 6 and (3.1) would

not hold.

The proof of Theorem 2 is deferred to the Appendix.

Example 1 (continued) Recall that the Huber M-estimator for location has the

score W(xt) = pc(x-t). For any d.f. G, M(-o;G) = c = -M(oo;G), and M(t;G) is

continuous in t so it has a zero 0. Assume 0=0. This is unique if

G(c-)>G(-c+), in which case T n-0 in probability by Proposition 2.2.1 of
n

Huber (1981). Since ic is continuous in total variation, (3.1) holds by
c

Lemma 1. Letting (x,t) = d/dt ,pc(x-t) = -p(x-t) if it exists, observeC

that (x,t-) = I(-c:x-t<c) and -(x,t+) = I(-c<x-t!c), where I(.) de-

notes the indicator function. Bounded convergence yields -m(O-;G = G(c-) - G(-c-)

and -m(O+;G) = G(c+) - G(-c+). Hence, by Theorem 2, n1/2T is asymptoticallynZ

normal if G(c+) - G(c-) = G(-c+) - G(-c-); otherwise, it has a limiting dis-

tribution consisting of the left and right halves of two normal distributionsJ.-

with different variances (cf. Huber (1981, p. 51)).

4. A counterexample

It is instructive to examine the extent of the non-normality that occurs

in a specific example. Consider again the optimal M-estimator for the Poisson

oarameter. The score function is

l(x,t) = Pc(Xt - 2I -) = xe' I - ,(t) < x < h(t)

C, h(t) 5x,

,',..............-'.....,',•.". ". . .•. -...-...-.... v.....-........:.:... ... •..-.........- .;,5 ,."-•.'



where Z(t) =t/2W5t)- -c) and h(t) = t2(t)+)

Let G be the actual d.f. and let e= T(G). The simplest situation is when

0 is small. Assume henceforth that ?-(e)<O< h(O) =1. Calculation yields

M~t) = c(ct -1) for t(t)<O, 0<h(t):51, and 6(t)=c{et0 +t) 1 } + t/0 (+ t)1

for Z(t)< 0, 1 : h(t) : 2. Since 5 is continuous, equating the two expressions

at e gives

(4.1) e/2e0 =c

The one-sided derivatives of sate6 are V(O-) =ce and a'(e+) = .ce (+a)-2

where (4.1) was used. Note that Sis strictly increasing at 0. Since

ip (-) 1and ic c)0

(4.2) -4(xe-) xl,..

and 1-2
fce (1 +6)- , x 0

=(~+ 1 cee {6_ + (l+0)- X= x1

10, x= 2,3,...

Suppose G is a mixture of a Poisson distribution Ft and a point mass at an

integer z, i.e., G =(I- e)F t+ Es Z Assume z >h(t) so dz,e+)=O0. From (4.2)

and (4.3)

(4.4) pj} _ +L)

6etwhere m(e-;G) =-ce -(1- 0s. The ratio (4.4) is unity only when t= 0, which

corresponds to E= 0 or z= t. By Theorem 2, the limiting distribution of

n /2(T n -e) consists of the right and left halves of two normal distributions.
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The ratio of their standard deviations is (4.4).

Solving 0 = M(6;G) = c{l- (1 -e)ee-t} yields t e+log(l -e). Table 1

shows the values of t and (4.4) for several values of E when e = 0.25 and

c = 6
'0/2 e- O=1.5576 ... (see (4.1)). In addition, the effect on a nominal .05

tail probability is shown.

For very small values of c the effect is minimal, which accords with the

robustness of T in the sense of weak* continuity (see Hampel (1971)), since* n

it is asymptotically normal at the model. As e increases, however, the ef-

fect becomes more serious, and inference based on T can be substantiallyn

biased.

For related work see Stigler (1973), who observes that a bias of this

type can arise when the trimmed mean is used for discrete or grouped data.

Table 1 Effect of contaminating mass e with e = 0.25 fixed r

E t r:= (4.4) (D(-1.645r),

0 0.25 1 .05
0.01 0.24 0.976 .054
0.05 0.199 0.877 .074
0.10 0.145 0.748 .109
0.15 0.087 0.610 .158
0.20 0.027 0.465 .222

5. Smooth score functions

In the example of the preceding section, one might argue that the para-

meter values where problems arise are unlikely to occur in practice, or that

c can be changed slightly. It is not, however, the non-normal limiting dis-

tribution of T at certain distributions that is of concern, but the insta-n

bility of inference based on Tn near those distributions. This phenomenon

• • •-....- . ..
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can alternatively be interpreted as a discontinuity of the asymptotic variance

functional V(T(G);G) = {m(T(G),G)}-1 £2(G)dG {m(T(G);G)}-1 ; cf. Huber (1981, p.

51). In the neighborhood of a distribution where V is discontinuous, estimates

of the variance of Tn may be unstable.

Instability of tyis type can be avoided by requiring the M-estimator score

function to be smooth, for example, by replacing i c(.) in (2.4) with a smooth

approximation. A natural way to construct such a function is by rescaling a

smooth distribution function.

Suppose F is an absolutely continuous d.f. with density f symmetric about

zero. Then

(5.1) tp(x) 2c{F(2  ) x

is monotone increasing, skew-symmetric about zero, and satisfies p(-o)= c and

'P'(O)=1. Observe that Wpc is obtained from (5.1) by taking F to be the uni-

form distribution on [-P/2,/ 2]. This can be approximated arbitrarily closely

by a symmetric beta distribution with a small value for the shape parameter,

i.e., f(x)'r{(/ 2+x)(1/ 2 -x)}a on E-1/2,1/2]." The resulting score function is

complicated, however, and its second derivative has jump discontinuities. A

more convenient choice is the logistic distribution, which leads to the smooth

function

L c(x) = ctanh (x/c).

This has appeared previously. L c(x-t) is the maximum likelihood score for

the location of a logistic distribution with scale 1. Holland and Welsch

(1977) include an M-estimator using Lc in a Monte Carlo study of robust re-

gression estimates.

For the important special case of estimating a Poisson parameter robustly,

.,.......,............. . .............
, , . _ '~~....-.. • .... . ,....-..... --... ,... ...... ..... _.',--.-" " -..-
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a smooth version of the optimal M-estimator solves

(5.2) n-  L (X /2-B(t)) = 0,
i=lc

where a is defined in the usual manner.

Table 2 gives asymptotic variances V8 and bounds y on influence functions

for the estimator defined by (5.2), labeled Lc, and the optimal estimator,

labeled ipc. In each case c=1.5. The calculations are at the Poisson model,

and V8 and y are stabilized by dividing by e and 9 /2 respectively.

Note that VO/0 is the asymptotic relative efficiency of the maximum like-

lihood estimator (sample mean) with respect to the corresponding M-estimator.

The asymptotic variances for the logistic score are slightly smaller than

those for the "optimal" score. This is possible because the bounds on the

influence function of L are slightly higher for c  In terms of performance
c .

at the model, there appears to be little difference between Lc and c .

Table 2 Asymptotic variances and influence function bounds at the Poisson model

Mean I'c Lc

0 Vo/a Y /0)'/2  Ve/e /6 /2

0.1 1.052 3.16 1.048 3.27
0.2 1.107 2.24 1.081 2.53
0.3 1.138 1.98 1.094 2.29
0.4 1.114 2.00 1.095 2.19
0.5 1.092 1.98 1.083 2.14
1.0 1.071 1.84 1.059 2.07
2.0 1.057 1.74 1.045 2.04
5.0 1.043 1.75 1.038 2.02

10.0 1.040 1.74 1.035 2.02
100.0 1.037 1.73 1.033 2.01 ,

'S

II'
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15

6. Further remarks

The need for smooth score functions is most clear when the data consist of

counts. In this case every deviation from the model involves point masses.

An important consequence of Theorem 1 is that Hampel's optimal estimator

(2.4) is indeed optimal as claimed when the model distribution is discrete.

It would be disturbing if the theory were to break down at a countable number

of parameter values. Moreover, the smooth versions discussed in Section 5,

which provide more stable inference, are justified for every parameter value

as being nearly optimal.

Although the discussion has focused on the score functions arising from

Hampel's optimality theory, it is not limited to that context. For instance,

a score based on Hampel's three part redescending i (see Huber (1981, p. 102))

will be prone to the same difficulties, and a smooth version will be more stable.

Appendix. Proof of Theorem 2.

Since the d.f. H is continuous, uniform convergence in (3.7) will follow

from pointwise convergence via Polya's Theorem (Serfling (1980, p. 18)).

Write M(t) for M(t;G) and m(t) for m(t;G). denote by U(6) the set

(t: O< It-el <6). By (B1), m is defined on U(6) if 6 is sufficiently small.

Moreover, given s >0, there is a 6 for which tE U(S) implies

Jm(t) -m(e-)l < if t<e

and

Im(t) - m(e+)1 < E if t>e.

Choosing E< min{Im(O-)J, Im(e+)I} then guarantees that Im(t)I is bounded

away from zero on U(6). Fix such a 6. -5

. - A-
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Since M(e) = 0, tEU(S) implies

(A.l) M(t) = m(T)(t-e)

for some T strictly between t and e, by the Mean Value Theorem (which only

requires one-sided derivatives at the endpoints of the interval on which it

is applied). Since m is bounded away from zero on U(6), (A.1) shows

It-o6 = O(IM(t)I)

as t-0. The right hand side of (A.1) equals

(A.2) D(t)(t- e) + R(t),

where

D(t) = m(e+)I(t>e) + m(e-)I(t<f),

R(t) = [{m(T) m(o+)}I(t>e) + {m(T) m(e-)}I(t<e)](t-8),

." .

" and I(A) is theindicator for the set A. Note that (A.2) also holds if t = 8.

Since R(t) = o(It-el) = o(IM(t)I), (A.1) and (A.2) yield

11(/2 '"

(A.3) D(Tn)n /(Tn - ) = n M(T n) + O(Infl M .I)"

Because of (B2), (B3) and the Lindeberg-Levy central limit theorem, the right

2
hand side of (A.3) converges in distribution to a N(O,a ) random variable,

and, hence, so does the left hand side.

To obtain the limiting distribution of Tn, partition its range and consider

cases. If z< 0 then

pr{n '/(T n-e)z, Tn >e} = 0,n B-
'

. .-- . 2 . ."• ... ' ... o." ' . .-.... .... ".-.' , . % % - ao ..-w ".- B.% " . . . -. .W.a. . . '-
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while

pr n /2 (T n-e) z, T ne < Pr{ID(T n In (/2 (T n JD(T n)IZ}.

Since D(T )=m(O-) when T < 6, and D(t) does not change sign on (0- 6,86+6)n n

by (Bi), (A.3) implies that this last probability converges to 'D(Im(e-)Iz/G)

*as n- -. Similar arguments establish that, for z>Q0,

1/2 - e)z T 6'/2
pr~n(T n : z n < } pr{Im(e-)In (Tn -e)<O0} 2+~

and

pr{n /2(T n-e) :z, T n >6O1

=pr{o< lm(e+)In /2 (Tn e) 5zlm(e+)jI- (m(e+)jz/G)-1

* and finally

1r /2 (T e) 5 }r{lm(o+)In /2 (Tno) > 0 1
nr~ (T, 6-O

as n-. The result follows by collecting terms.

.**v.v.,



-. ... . . . - - - - - . * °

REFERENCES

Boos, D.D. and Serfling, R.J. (1980). A note on differentials and the CLT
and LIL for statistical functions, with applications to M-estimates.
Ann. Stat. 8, 618-624.

Carroll, R.J. (1978a). On almost sure expansions for M-estimates. Ann.
Stat. 6, 314-318.

Carroll, R.J. (1978b). On the asymptotic distribution of multivariate M-

estimates. J. Multi. Anal. 8, 361-371.

Franklin, P. (1940). A Treatise on Advanced Calculus. Wiley, New York.

Hampel, R. (1968). Contributions to the theory of robust estimation. Ph.D.
thesis, University of California, Berkeley.

Hampel, F. (1971). A general qualitative definition of robustness. Ann.
Math. Statist. 42, 1887-1896.

Hampel, F. (1974). The influence curve and its role in robust estimation.
J. Amer. Statist. Assoc. 62, 1179-1186. ,4

Holland, P.W. and Welsch, R.E. (1977). Robust regression using iterativity
reweighted least-squares. Commun. in Statist. A6, 813-827.

Huber, P.J. (1964). Robust estimation of a location parameter. Ann. Math.
Statist. 35, 73-101.

Huber, P.J. (1967). The behavior of maximum likelihood estimates under
nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1. University of Cali-
fornia Press, Berkeley.

Huber, P.J. (1981). Robust Statistics. Wiley, New York.

Krasker, W.S. (1980). Estimation in linear regression models with disparate
data points. Econometrica 48, 1333-1346.

Krasker, W.S. and Welsch, R.E. (1982). Efficient bounded-influence regression

estimation. J. Amer. Statist. Assoc. 77, 595-604.

Ruppert, D. (1985). On the bounded influence regression estimator of Krasker
and Welsch. J. Amer. Statist. Assoc. 80, 205-203.

Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics.
Wiley, New York.

Simpson, D.G. (1985). Some contributions to robust inference for discrete
probabilit models. Ph.D. dissertation, University of North Carolina,
Chapel Hill.

A.%



Stefanski, L.A., Carroll, R.J., and Ruppert, D. (1985). Optimally bounded
score functions for generalized linear models with anolications to logistic
regression. (Tentatively accepted by Biometrika.)

Stigler, S.M. (1973). The asymptotic distribution of the trimmed mean.
Ann. Statist. 1, 472-477.



4

V..

.4, 4 . 4 . . 4 4 .~

.4 S
4* 4 .~. .*.s~. *4~5* 4~ ~ ** *..4.. . . . *S.S...S...

5 4 5 . 54544. 5 .
**.*................-4.........S. *,* ............... ,~5..' *5 S.

.". *~4~~*,' .. ,..-... *44~S4 45~5. *4454 %55S*4*54........- -4...
d - .~ ~S ~ 5 .. 4 .5. S. 4-.

- a - S...


